首页 > 基础资料 博客日记

【Java】PriorityQueue--优先级队列

2023-08-31 17:50:32基础资料围观315

这篇文章介绍了【Java】PriorityQueue--优先级队列,分享给大家做个参考,收藏Java资料网收获更多编程知识

目录

 一、优先级队列 

(1)概念

二、优先级队列的模拟实现

(1)堆的概念 

(2)堆的存储方式  

(3)堆的创建

堆向下调整

(4)堆的插入与删除

堆的插入

 堆的删除

三、常用接口介绍

1、PriorityQueue的特性

2、PriorityQueue常用接口介绍  

(1)优先级队列的构造

(2)插入/删除/获取优先级最高的元素

四、堆排序 


 一、优先级队列 

(1)概念

       前面介绍过队列, 队列是一种先进先出(FIFO)的数据结构 ,但有些情况下, 操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列 ,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话.
在这种情况下, 数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象 这种数据结构就是 优先级队列(Priority Queue)。

二、优先级队列的模拟实现

JDK1.8 中的 PriorityQueue底层使用了堆这种数据结构 ,而堆实际就是在完全二叉树的基础上进行了一些调整。

(1)堆的概念 

       如果有一个 关键码的集合 K = {k0 k1 k2 kn-1} ,把它的所有元素 按完全二叉树的顺序存储方式存储在一个一维数组中 并满足: Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 Ki >= K2i+2) i = 0 1 2… ,则 称为小堆 ( 或大堆) 。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

大根堆和小根堆的示例图如下:

 


(2)堆的存储方式  

从堆的概念可知, 堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储
注意:对于 非完全二叉树,则不适合使用顺序方式进行存储 ,因为为了能够还原二叉树, 空间中必须要存储空节点,就会导致空间利用率比较低

 

将元素存储到数组中后,可以根据二叉树性质 对树进行还原。假设 i 为节点在数组中的下标,则有:
如果 i 0 ,则 i 表示的节点为根节点,否则 i 节点的双亲节点为 (i - 1)/2
如果 2 * i + 1 小于节点个数,则节点 i 的左孩子下标为 2 * i + 1 ,否则没有左孩子
如果 2 * i + 2 小于节点个数,则节点 i 的右孩子下标为 2 * i + 2 ,否则没有右孩子

 


(3)堆的创建

堆向下调整

我们来思考一个问题:对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。 

向下过程(以小堆为例):

1. parent 标记需要调整的节点, child 标记 parent 的左孩子 (注意:parent如果有孩子一定先是有左孩子)
2. 如果 parent 的左孩子存在,即 :child < size , 进行以下操作,直到 parent 的左孩子不存在
        (1)parent右孩子是否存在,存在找到左右孩子中最小的孩子,让 child 进行标
        (2)将parent 与较小的孩子 child 比较,如果:
parent 小于较小的孩子 child ,调整结束
否则:交换 parent 与较小的孩子 child ,交换完成之后, parent 中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child child = parent*2+1; 然后继续 2

 

public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
        int child = 2 * parent + 1;
        int size = array.length;
        while (child < size) {
// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
            if(child+1 < size && array[child+1] < array[child]){
                child += 1;
            }
// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
            if (array[parent] <= array[child]) {
                break;
            }else{
// 将双亲与较小的孩子交换
                int t = array[parent];
                array[parent] = array[child];
                array[child] = t;
// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
                parent = child;
                child = parent * 2 + 1;
            }
        }
    }

 注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。

时间复杂度分析:
最坏的情况 即图示的情况, 从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(

堆的创建

那对于普通的序列 { 1,5,3,8,7,6 } ,即根节点的左右子树不满足堆的特性,又该如何调整呢?
此时,我们只需要从倒数第一个非叶子结点开始,依次进行向下调整即可。
    public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
        int root = ((array.length-2)>>1);
        for (; root >= 0; root--) {
            shiftDown(array, root);
        }
    }

时间复杂度的计算:

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的就是近似值,多几个节点不影响最终结果)

因此:建堆的时间复杂度为O(N) 


(4)堆的插入与删除

堆的插入

堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中 ( 注意:空间不够时需要扩容 )
2. 将最后新插入的节点向上调整,直到满足堆的性质

向上调整的代码如下:

    public void shiftUp(int child) {
// 找到child的双亲
        int parent = (child - 1) / 2;
        while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束
            if (array[parent] > array[child]) {
                break;
            }
            else{
// 将双亲与孩子节点进行交换
                int t = array[parent];
                array[parent] = array[child];
                array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
                child = parent;
                parent = (child - 1) / 2;
            }
        }
    }

 堆的删除

 注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整

 

 


三、常用接口介绍

1、PriorityQueue的特性

Java 集合框架中提供了 PriorityQueue PriorityBlockingQueue 两种类型的优先级队列, PriorityQueue是线程不安全的 PriorityBlockingQueue是线程安全的 ,本文主要介绍 PriorityQueue
关于PriorityQueue的使用要注意:
1. 使用时必须导入 PriorityQueue 所在的包,即:
import java.util.PriorityQueue;
2. PriorityQueue 中放置的 元素必须要能够比较大小,不能插入无法比较大小的对象 ,否则会抛出 ClassCastException异常
3. 不能插入null对象 否则会抛出 NullPointerException
4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
5. 插入和删除元素的时间复杂度为O(logN)
6. PriorityQueue 底层使用了 堆数据结构
7. PriorityQueue 默认情况下是小堆 --- 即每次获取到的元素都是最小的元素

2、PriorityQueue常用接口介绍  

(1)优先级队列的构造

此处只是列出了 PriorityQueue 中常见的几种构造方式,其他的可以参考帮助文档。

 

    static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11
        PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
        PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
        ArrayList<Integer> list = new ArrayList<>();
        list.add(4);
        list.add(3);
        list.add(2);
        list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素
        PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
        System.out.println(q3.size());
        System.out.println(q3.peek());
    }

注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器

// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2-o1;
    }
}
public class TestPriorityQueue {
    public static void main(String[] args) {
        PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
        p.offer(4);
        p.offer(3);
        p.offer(2);
        p.offer(1);
        p.offer(5);
        System.out.println(p.peek());
    }
}
此时创建出来的就是一个大堆。

(2)插入/删除/获取优先级最高的元素

    static void TestPriorityQueue2(){
        int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
        PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
        for (int e: arr) {
            q.offer(e);
        }
        System.out.println(q.size()); // 打印优先级队列中有效元素个数
        System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
        q.poll();
        q.poll();
        System.out.println(q.size()); // 打印优先级队列中有效元素个数
        System.out.println(q.peek()); // 获取优先级最高的元素
        q.offer(0);
        System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空
        q.clear();
        if(q.isEmpty()){
            System.out.println("优先级队列已经为空!!!");
        }
        else{
            System.out.println("优先级队列不为空");
        }
    }

 注意:以下是JDK 1.8中,PriorityQueue的扩容方式:

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
        int oldCapacity = queue.length;
// Double size if small; else grow by 50%
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                (oldCapacity + 2) :
                (oldCapacity >> 1));
// overflow-conscious code
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        queue = Arrays.copyOf(queue, newCapacity);
    }
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }
优先级队列的扩容说明:
如果容量小于 64 时,是按照 oldCapacity 2 倍方式扩容的
如果容量大于等于 64 ,是按照 oldCapacity 1.5 倍方式扩容的
如果容量超过 MAX_ARRAY_SIZE ,按照 MAX_ARRAY_SIZE 来进行扩容

四、堆排序 

堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1. 建堆
        升序:建大堆
        降序:建小堆
2. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

 

 


文章来源:https://blog.csdn.net/weixin_73616913/article/details/131361059
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云