首页 > 基础资料 博客日记
Spring Cloud Gateway实现分布式限流和熔断降级
2025-06-15 16:00:02基础资料围观14次
小伙伴们,你们好呀!我是老寇!一起学习学习gateway限流和熔断降级
一、限流
思考:为啥需要限流?
在一个流量特别大的业务场景中,如果不进行限流,会造成系统宕机,当大批量的请求到达后端服务时,会造成资源耗尽【CPU、内存、线程、网络带宽、数据库连接等是有限的】,进而拖垮系统。
1.常见限流算法
- 漏桶算法
- 令牌桶算法
1.1漏桶算法(不推荐)
1.1.1.原理
将请求缓存到一个队列中,然后以固定的速度处理,从而达到限流的目的
1.1.2.实现
将请求装到一个桶中,桶的容量为固定的一个值,当桶装满之后,就会将请求丢弃掉,桶底部有一个洞,以固定的速率流出。
1.1.3.举例
桶的容量为1W,有10W并发请求,最多只能将1W请求放入桶中,其余请求全部丢弃,以固定的速度处理请求
1.1.4.缺点
处理突发流量效率低(处理请求的速度不变,效率很低)
1.2.令牌桶算法(推荐)
1.2.1.原理
将请求放在一个缓冲队列中,拿到令牌后才能进行处理
1.2.2.实现
装令牌的桶大小固定,当令牌装满后,则不能将令牌放入其中;每次请求都会到桶中拿取一个令牌才能放行,没有令牌时即丢弃请求/继续放入缓存队列中等待
1.2.3.举例
桶的容量为10w个,生产1w个/s,有10W的并发请求,以每秒10W个/s速度处理,随着桶中的令牌很快用完,速度又慢慢降下来啦,而生产令牌的速度趋于一致1w个/s
1.2.4.缺点
处理突发流量提供了系统性能,但是对系统造成了一定的压力,桶的大小不合理,甚至会压垮系统(处理1亿的并发请求,将桶的大小设置为1,这个系统一下就凉凉啦)
2.网关限流(Spring Cloud Gateway + Redis实战)
2.1.pom.xml配置
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-gateway</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
</dependency>
2.2.yaml配置
spring:
application:
name: laokou-gateway
cloud:
gateway:
routes:
- id: LAOKOU-SSO-DEMO
uri: lb://laokou-sso-demo
predicates:
- Path=/sso/**
filters:
- StripPrefix=1
- name: RequestRateLimiter #请求数限流,名字不能乱打
args:
key-resolver: "#{@ipKeyResolver}"
redis-rate-limiter.replenishRate: 1 #生成令牌速率-设为1方便测试
redis-rate-limiter.burstCapacity: 1 #令牌桶容量-设置1方便测试
redis:
database: 0
cluster:
nodes: x.x.x.x:7003,x.x.x.x:7004,x.x.x.x:7005,x.x.x.x:7003,x.x.x.x:7004,x.x.x.x:7005
password: laokou #密码
timeout: 6000ms #连接超时时长(毫秒)
jedis:
pool:
max-active: -1 #连接池最大连接数(使用负值表示无极限)
max-wait: -1ms #连接池最大阻塞等待时间(使用负值表示没有限制)
max-idle: 10 #连接池最大空闲连接
min-idle: 5 #连接池最小空间连接
2.3.创建bean
@Configuration
public class RequestRateLimiterConfig {
@Bean(value = "ipKeyResolver")
public KeyResolver ipKeyResolver(RemoteAddressResolver remoteAddressResolver) {
return exchange -> Mono.just(remoteAddressResolver.resolve(exchange).getAddress().getHostAddress());
}
@Bean
public RemoteAddressResolver remoteAddressResolver() {
// 远程地址解析器
return XForwardedRemoteAddressResolver.trustAll();
}
}
3.测试限流(编写java并发测试)
@Slf4j
public class HttpUtil {
public static void apiConcurrent(String url,Map<String,String> params) {
Integer count = 200;
//创建线程池
ThreadPoolExecutor pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.SECONDS, new SynchronousQueue<>());
//同步工具
CountDownLatch latch = new CountDownLatch(count);
Map<String,String> dataMap = new HashMap<>(1);
dataMap.put("authorize","XXXXXXX");
for (int i = 0; i < count; i++) {
pool.execute(() -> {
try {
//访问网关的API接口
HttpUtil.doGet("http://localhost:1234/sso/laokou-demo/user",dataMap);
} catch (IOException e) {
e.printStackTrace();
}finally {
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static String doGet(String url, Map<String, String> params) throws IOException {
//创建HttpClient对象
CloseableHttpClient httpClient = HttpClients.createDefault();
String resultString = "";
CloseableHttpResponse response = null;
try {
//创建uri
URIBuilder builder = new URIBuilder(url);
if (!params.isEmpty()) {
for (Map.Entry<String, String> entry : params.entrySet()) {
builder.addParameter(entry.getKey(), entry.getValue());
}
}
URI uri = builder.build();
//创建http GET请求
HttpGet httpGet = new HttpGet(uri);
List<NameValuePair> paramList = new ArrayList<>();
RequestBuilder requestBuilder = RequestBuilder.get().setUri(new URI(url));
requestBuilder.setEntity(new UrlEncodedFormEntity(paramList, Consts.UTF_8));
httpGet.setHeader(new BasicHeader("Content-Type", "application/json;charset=UTF-8"));
httpGet.setHeader(new BasicHeader("Accept", "*/*;charset=utf-8"));
//执行请求
response = httpClient.execute(httpGet);
//判断返回状态是否是200
if (response.getStatusLine().getStatusCode() == 200) {
resultString = EntityUtils.toString(response.getEntity(), "UTF-8");
}
} catch (Exception e) {
log.info("调用失败:{}",e);
} finally {
if (response != null) {
response.close();
}
httpClient.close();
}
log.info("打印:{}",resultString);
return resultString;
}
}
说明这个网关限流配置是没有问题的
4.源码查看
Spring Cloud Gateway RequestRateLimiter GatewayFilter Factory文档地址
工厂 RequestRateLimiter GatewayFilter
使用一个RateLimiter
实现来判断当前请求是否被允许继续。如果不允许,HTTP 429 - Too Many Requests
则返回默认状态。
4.1.查看 RequestRateLimiterGatewayFilterFactory
@Override
public GatewayFilter apply(Config config) {
KeyResolver resolver = getOrDefault(config.keyResolver, defaultKeyResolver);
RateLimiter<Object> limiter = getOrDefault(config.rateLimiter, defaultRateLimiter);
boolean denyEmpty = getOrDefault(config.denyEmptyKey, this.denyEmptyKey);
HttpStatusHolder emptyKeyStatus = HttpStatusHolder
.parse(getOrDefault(config.emptyKeyStatus, this.emptyKeyStatusCode));
return (exchange, chain) -> resolver.resolve(exchange).defaultIfEmpty(EMPTY_KEY).flatMap(key -> {
if (EMPTY_KEY.equals(key)) {
if (denyEmpty) {
setResponseStatus(exchange, emptyKeyStatus);
return exchange.getResponse().setComplete();
}
return chain.filter(exchange);
}
String routeId = config.getRouteId();
if (routeId == null) {
Route route = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);
routeId = route.getId();
}
// 执行限流
return limiter.isAllowed(routeId, key).flatMap(response -> {
for (Map.Entry<String, String> header : response.getHeaders().entrySet()) {
exchange.getResponse().getHeaders().add(header.getKey(), header.getValue());
}
if (response.isAllowed()) {
return chain.filter(exchange);
}
setResponseStatus(exchange, config.getStatusCode());
return exchange.getResponse().setComplete();
});
});
}
4.2.查看 RedisRateLimiter
@Override
@SuppressWarnings("unchecked")
public Mono<Response> isAllowed(String routeId, String id) {
if (!this.initialized.get()) {
throw new IllegalStateException("RedisRateLimiter is not initialized");
}
// 这里如何加载配置?请思考
Config routeConfig = loadConfiguration(routeId);
// 令牌桶每秒产生令牌数量
int replenishRate = routeConfig.getReplenishRate();
// 令牌桶容量
int burstCapacity = routeConfig.getBurstCapacity();
// 请求消耗的令牌数
int requestedTokens = routeConfig.getRequestedTokens();
try {
// 键
List<String> keys = getKeys(id);
// 参数
List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "", "", requestedTokens + "");
// 调用lua脚本
Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
return flux.onErrorResume(throwable -> {
if (log.isDebugEnabled()) {
log.debug("Error calling rate limiter lua", throwable);
}
return Flux.just(Arrays.asList(1L, -1L));
}).reduce(new ArrayList<Long>(), (longs, l) -> {
longs.addAll(l);
return longs;
}).map(results -> {
// 判断是否等于1,1表示允许通过,0表示不允许通过
boolean allowed = results.get(0) == 1L;
Long tokensLeft = results.get(1);
Response response = new Response(allowed, getHeaders(routeConfig, tokensLeft));
if (log.isDebugEnabled()) {
log.debug("response: " + response);
}
return response;
});
}
catch (Exception e) {
log.error("Error determining if user allowed from redis", e);
}
return Mono.just(new Response(true, getHeaders(routeConfig, -1L)));
}
static List<String> getKeys(String id) {
String prefix = "request_rate_limiter.{" + id;
String tokenKey = prefix + "}.tokens";
String timestampKey = prefix + "}.timestamp";
return Arrays.asList(tokenKey, timestampKey);
}
思考:redis限流配置是如何加载?
其实就是监听动态路由的事件并把配置存起来
4.3.重点来了,令牌桶 /META-INF/scripts/request_rate_limiter.lua 脚本剖析
-- User Request Rate Limiter filter
-- See https://stripe.com/blog/rate-limiters
-- See https://gist.github.com/ptarjan/e38f45f2dfe601419ca3af937fff574d#file-1-check_request_rate_limiter-rb-L11-L34
-- 令牌桶算法工作原理
-- 1.系统以恒定速率往桶里面放入令牌
-- 2.请求需要被处理,则需要从桶里面获取一个令牌
-- 3.如果桶里面没有令牌可获取,则可以选择等待或直接拒绝并返回
-- 令牌桶算法工作流程
-- 1.计算填满令牌桶所需要的时间(填充时间 = 桶容量 / 速率)
-- 2.设置存储数据的TTL(过期时间),为填充时间的两倍(存储时间 = 填充时间 * 2)
-- 3.从Redis获取当前令牌的剩余数量和上一次调用的时间戳
-- 4.计算距离上一次调用的时间间隔(时间间隔 = 当前时间 - 上一次调用时间)
-- 5.计算填充的令牌数量(填充令牌数量 = 时间间隔 * 速率)【前提:桶容量是固定的,不存在无限制的填充】
-- 6.判断是否有足够多的令牌满足请求【 (填充令牌数量 + 剩余令牌数量) >= 请求数量 && (填充令牌数量 + 剩余令牌数量) <= 桶容量 】
-- 7.如果请求被允许,则从桶里面取出相应数据的令牌
-- 8.如果TTL为正,则更新Redis键中的令牌和时间戳
-- 9.返回两个两个参数(allowed_num:请求被允许标志。1允许,0不允许)、(new_tokens:填充令牌后剩余的令牌数据)
-- 随机写入
redis.replicate_commands()
-- 令牌桶Key -> 存储当前可用令牌的数量(剩余令牌数量)
local tokens_key = KEYS[1]
-- 时间戳Key -> 存储上次令牌刷新的时间戳
local timestamp_key = KEYS[2]
-- 令牌填充速率
local rate = tonumber(ARGV[1])
-- 令牌桶容量
local capacity = tonumber(ARGV[2])
-- 当前时间
local now = tonumber(ARGV[3])
-- 请求数量
local requested = tonumber(ARGV[4])
-- 填满令牌桶所需要的时间
local fill_time = capacity / rate
-- 设置key的过期时间(填满令牌桶所需时间的2倍)
local ttl = math.floor(fill_time * 2)
-- 判断当前时间,为空则从redis获取
if now == nil then
now = redis.call('TIME')[1]
end
-- 获取当前令牌的剩余数量
local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
last_tokens = capacity
end
-- 获取上一次调用的时间戳
local last_refreshed = tonumber(redis.call('get', timestamp_key))
if last_refreshed == nil then
last_refreshed = 0
end
-- 计算距离上一次调用的时间间隔
local delta = math.max(0, now - last_refreshed)
-- 当前的令牌数量(剩余 + 填充 <= 桶容量)
local now_tokens = math.min(capacity, last_refreshed + (rate * delta))
-- 判断是否有足够多的令牌满足请求
local allowed = now_tokens >= requested
-- 定义当前令牌的剩余数量
local new_tokens = now_tokens
-- 定义被允许标志
local allowed_num = 0
if allowed then
new_tokens = now_tokens - requested
-- 允许访问
allowed_num = 1
end
-- ttl > 0,将当前令牌的剩余数量和当前时间戳存入redis
if ttl > 0 then
redis.call('setex', tokens_key, ttl, new_tokens)
redis.call('setex', timestamp_key, ttl, now)
end
-- 返回参数
return { allowed_num, new_tokens }
4.4.查看 GatewayRedisAutoConfiguration 脚本初始化
@Bean
@SuppressWarnings("unchecked")
public RedisScript redisRequestRateLimiterScript() {
DefaultRedisScript redisScript = new DefaultRedisScript<>();
redisScript.setScriptSource(
// 根据指定路径获取lua脚本来初始化配置
new ResourceScriptSource(new ClassPathResource("META-INF/scripts/request_rate_limiter.lua")));
redisScript.setResultType(List.class);
return redisScript;
}
@Bean
@ConditionalOnMissingBean
public RedisRateLimiter redisRateLimiter(ReactiveStringRedisTemplate redisTemplate,
@Qualifier(RedisRateLimiter.REDIS_SCRIPT_NAME) RedisScript<List<Long>> redisScript,
ConfigurationService configurationService) {
return new RedisRateLimiter(redisTemplate, redisScript, configurationService);
}
思考:请求限流过滤器是如何开启?
1.通过yaml配置开启
spring:
cloud:
gateway:
server:
webflux:
filter:
request-rate-limiter:
enabled: true
2.GatewayAutoConfiguration自动注入bean
@Bean
@ConditionalOnBean({ RateLimiter.class, KeyResolver.class })
@ConditionalOnEnabledFilter
public RequestRateLimiterGatewayFilterFactory requestRateLimiterGatewayFilterFactory(RateLimiter rateLimiter,
KeyResolver resolver) {
return new RequestRateLimiterGatewayFilterFactory(rateLimiter, resolver);
}
重点来了,真正加载这个bean的是 @ConditionalOnEnabledFilter
注解进行判断
@Retention(RetentionPolicy.RUNTIME)
@Target({ ElementType.TYPE, ElementType.METHOD })
@Documented
@Conditional(OnEnabledFilter.class)
public @interface ConditionalOnEnabledFilter {
// 这里value是用来指定满足条件的某些类,换一句话说,就是这些类都加载或注入到ioc容器,这个注解修饰的自动装配类才会生效
Class<? extends GatewayFilterFactory<?>> value() default OnEnabledFilter.DefaultValue.class;
}
我们继续跟进代码,查看@Conditional(OnEnabledFilter.class)
众所周知,@Conditional
可以用来加载满足条件的bean,所以,我们分析一下OnEnabledFilter
public class OnEnabledFilter extends OnEnabledComponent<GatewayFilterFactory<?>> {}
我分析它的父类,这里有你想要的答案!
public abstract class OnEnabledComponent<T> extends SpringBootCondition implements ConfigurationCondition {
private static final String PREFIX = "spring.cloud.gateway.server.webflux.";
private static final String SUFFIX = ".enabled";
private ConditionOutcome determineOutcome(Class<? extends T> componentClass, PropertyResolver resolver) {
// 拼接完整名称
// 例如 => spring.cloud.gateway.server.webflux.request-rate-limiter.enabled
String key = PREFIX + normalizeComponentName(componentClass) + SUFFIX;
ConditionMessage.Builder messageBuilder = forCondition(annotationClass().getName(), componentClass.getName());
if ("false".equalsIgnoreCase(resolver.getProperty(key))) {
// 不满足条件不加载bean
return ConditionOutcome.noMatch(messageBuilder.because("bean is not available"));
}
// 满足条件加载bean
return ConditionOutcome.match();
}
}
5.优化限流响应[使用全限定类名直接覆盖类]
小伙伴们,有没有发现,这个这个响应体封装的不太好,因此,我们来自定义吧,我们直接覆盖类,代码修改如下
@Getter
@ConfigurationProperties("spring.cloud.gateway.server.webflux.filter.request-rate-limiter")
public class RequestRateLimiterGatewayFilterFactory
extends AbstractGatewayFilterFactory<RequestRateLimiterGatewayFilterFactory.Config> {
private static final String EMPTY_KEY = "____EMPTY_KEY__";
private final RateLimiter<?> defaultRateLimiter;
private final KeyResolver defaultKeyResolver;
/**
* Switch to deny requests if the Key Resolver returns an empty key, defaults to true.
*/
@Setter
private boolean denyEmptyKey = true;
/** HttpStatus to return when denyEmptyKey is true, defaults to FORBIDDEN. */
@Setter
private String emptyKeyStatusCode = HttpStatus.FORBIDDEN.name();
public RequestRateLimiterGatewayFilterFactory(RateLimiter<?> defaultRateLimiter, KeyResolver defaultKeyResolver) {
super(Config.class);
this.defaultRateLimiter = defaultRateLimiter;
this.defaultKeyResolver = defaultKeyResolver;
}
@Override
public GatewayFilter apply(Config config) {
KeyResolver resolver = getOrDefault(config.keyResolver, defaultKeyResolver);
RateLimiter<?> limiter = getOrDefault(config.rateLimiter, defaultRateLimiter);
boolean denyEmpty = getOrDefault(config.denyEmptyKey, this.denyEmptyKey);
HttpStatusHolder emptyKeyStatus = HttpStatusHolder
.parse(getOrDefault(config.emptyKeyStatus, this.emptyKeyStatusCode));
return (exchange, chain) -> resolver.resolve(exchange).defaultIfEmpty(EMPTY_KEY).flatMap(key -> {
if (EMPTY_KEY.equals(key)) {
if (denyEmpty) {
setResponseStatus(exchange, emptyKeyStatus);
return exchange.getResponse().setComplete();
}
return chain.filter(exchange);
}
String routeId = config.getRouteId();
if (routeId == null) {
Route route = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);
Assert.notNull(route, "Route is null");
routeId = route.getId();
}
return limiter.isAllowed(routeId, key).flatMap(response -> {
for (Map.Entry<String, String> header : response.getHeaders().entrySet()) {
exchange.getResponse().getHeaders().add(header.getKey(), header.getValue());
}
if (response.isAllowed()) {
return chain.filter(exchange);
}
// 主要修改这行
return responseOk(exchange, Result.fail("Too_Many_Requests", "请求太频繁"));
});
});
}
private Mono<Void> responseOk(ServerWebExchange exchange, Object data) {
return responseOk(exchange, JacksonUtils.toJsonStr(data), MediaType.APPLICATION_JSON);
}
private Mono<Void> responseOk(ServerWebExchange exchange, String str, MediaType contentType) {
DataBuffer buffer = exchange.getResponse().bufferFactory().wrap(str.getBytes(StandardCharsets.UTF_8));
ServerHttpResponse response = exchange.getResponse();
response.setStatusCode(HttpStatus.OK);
response.getHeaders().setContentType(contentType);
response.getHeaders().setContentLength(str.getBytes(StandardCharsets.UTF_8).length);
return response.writeWith(Flux.just(buffer));
}
private <T> T getOrDefault(T configValue, T defaultValue) {
return (configValue != null) ? configValue : defaultValue;
}
public static class Config implements HasRouteId {
@Getter
private KeyResolver keyResolver;
@Getter
private RateLimiter<?> rateLimiter;
@Getter
private HttpStatus statusCode = HttpStatus.TOO_MANY_REQUESTS;
@Getter
private Boolean denyEmptyKey;
@Getter
private String emptyKeyStatus;
private String routeId;
public Config setKeyResolver(KeyResolver keyResolver) {
this.keyResolver = keyResolver;
return this;
}
public Config setRateLimiter(RateLimiter<?> rateLimiter) {
this.rateLimiter = rateLimiter;
return this;
}
public Config setStatusCode(HttpStatus statusCode) {
this.statusCode = statusCode;
return this;
}
public Config setDenyEmptyKey(Boolean denyEmptyKey) {
this.denyEmptyKey = denyEmptyKey;
return this;
}
public Config setEmptyKeyStatus(String emptyKeyStatus) {
this.emptyKeyStatus = emptyKeyStatus;
return this;
}
@Override
public void setRouteId(String routeId) {
this.routeId = routeId;
}
@Override
public String getRouteId() {
return this.routeId;
}
}
}
二、熔断降级
思考:为什么需要熔断降级?
当某个服务发生故障时(超时,响应慢,宕机),上游服务无法及时获取响应,进而也导致故障,出现服务雪崩【服务雪崩是指故障像滚雪球一样沿着调用链向上游扩展,进而导致整个系统瘫痪】
熔断降级的目标就是在故障发生时,快速隔离问题服务【快速失败,防止资源耗尽】,保护系统资源不被耗尽,防止故障扩散,保护核心业务可用性。
1.技术选型
1.1.熔断降级框架选型对比表
对比维度 | Hystrix (Netflix) | Sentinel (Alibaba) | Resilience4j |
---|---|---|---|
当前状态 | ❌ 停止更新 (维护模式) | ✅ 持续更新 | ✅ 持续更新 |
熔断机制 | 滑动窗口计数 | 响应时间/异常比例/QPS | 错误率/响应时间阈值 |
流量控制 | ❌ 仅基础隔离 | ✅ QPS/并发数/热点参数/集群流控 | ✅ RateLimiter |
隔离策略 | 线程池(开销大)/信号量 | 并发线程数(无线程池开销) | 信号量/Bulkhead |
降级能力 | Fallback 方法 | Fallback + 系统规则自适应 | Fallback + 自定义组合策略 |
实时监控 | ✅ Hystrix Dashboard | ✅ 原生控制台(可视化动态规则) | ❌ 需整合 Prometheus/Grafana |
动态配置 | ❌ 依赖 Archaius | ✅ 控制台实时推送 | ✅ 需编码实现(如Spring Cloud Config) |
生态集成 | ✅ Spring Cloud Netflix | ✅ Spring Cloud Alibaba/多语言网关 | ✅ Spring Boot/响应式编程 |
性能开销 | 高(线程池隔离) | 低(无额外线程) | 极低(纯函数式) |
适用场景 | 遗留系统维护 | 高并发控制/秒杀/热点防护 | 云原生/轻量级微服务 |
推荐指数 | ⭐⭐ (不推荐新项目) | ⭐⭐⭐⭐⭐ (Java高并发首选) | ⭐⭐⭐⭐⭐ (云原生/响应式首选) |
1.2选型决策指南
需求场景 | 推荐方案 | 原因 |
---|---|---|
电商秒杀/API高频调用管控 | ✅ Sentinel | 精细流量控制+热点防护+实时看板 |
Kubernetes云原生微服务 | ✅ Resilience4j | 轻量化+无缝集成Prometheus+响应式支持 |
Spring Cloud Netflix旧系统 | ⚠️ Hystrix | 兼容现存代码(短期过渡) |
多语言混合架构(如Go+Java) | ✅ Sentinel | 通过Sidecar代理支持非Java服务 |
响应式编程(WebFlux) | ✅ Resilience4j | 原生Reactive API支持 |
2.Resilience4j使用
Resilience4j
可以看作是 Hystrix
的替代品,Resilience4j支持 熔断器
和单机限流
Resilience4j 是一个专为函数式编程设计的轻量级容错库。Resilience4j 提供高阶函数(装饰器),可通过断路器、速率限制器、重试或隔离功能增强任何函数式接口、lambda 表达式或方法引用。您可以在任何函数式接口、lambda 表达式或方法引用上堆叠多个装饰器。这样做的好处是,您可以只选择所需的装饰器,而无需考虑其他因素。
2.1.网关熔断降级(Spring Cloud Gateway + Resilience4j实战)
2.1.1.pom依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-circuitbreaker-reactor-resilience4j</artifactId>
</dependency>
2.1.2.yaml配置
spring:
application:
name: laokou-gateway
cloud:
gateway:
server:
webflux:
routes:
- id: LAOKOU-SSO-DEMO
uri: lb://laokou-sso-demo
predicates:
- Path=/sso/**
filters:
- name: CircuitBreaker
args:
name: default
fallbackUri: "forward:/fallback"
filter:
circuit-breaker:
enabled: true
2.1.3.CircuitBreakerConfig配置
/**
* @author laokou
*/
@Configuration
public class CircuitBreakerConfig {
@Bean
public RouterFunction<ServerResponse> routerFunction() {
return RouterFunctions.route(
RequestPredicates.path("/fallback").and(RequestPredicates.accept(MediaType.TEXT_PLAIN)),
(request) -> ServerResponse.status(HttpStatus.SC_OK)
.contentType(MediaType.APPLICATION_JSON)
.body(BodyInserters.fromValue(Result.fail("Service_Unavailable", "服务正在维护"))));
}
@Bean
public Customizer<ReactiveResilience4JCircuitBreakerFactory> reactiveResilience4JCircuitBreakerFactoryCustomizer() {
return factory -> factory.configureDefault(id -> new Resilience4JConfigBuilder(id)
// 3秒后超时时间
.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(3)).build())
.circuitBreakerConfig(io.github.resilience4j.circuitbreaker.CircuitBreakerConfig.ofDefaults())
.build());
}
}
我是老寇,我们下次再见啦!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
上一篇:hot100之图论
下一篇:没有了