首页 > 基础资料 博客日记

Spring Cloud Gateway实现分布式限流和熔断降级

2025-06-15 16:00:02基础资料围观14

这篇文章介绍了Spring Cloud Gateway实现分布式限流和熔断降级,分享给大家做个参考,收藏Java资料网收获更多编程知识

小伙伴们,你们好呀!我是老寇!一起学习学习gateway限流和熔断降级

一、限流

思考:为啥需要限流?

在一个流量特别大的业务场景中,如果不进行限流,会造成系统宕机,当大批量的请求到达后端服务时,会造成资源耗尽【CPU、内存、线程、网络带宽、数据库连接等是有限的】,进而拖垮系统。

1.常见限流算法

  • 漏桶算法
  • 令牌桶算法

1.1漏桶算法(不推荐)

1.1.1.原理

将请求缓存到一个队列中,然后以固定的速度处理,从而达到限流的目的

1.1.2.实现

将请求装到一个桶中,桶的容量为固定的一个值,当桶装满之后,就会将请求丢弃掉,桶底部有一个洞,以固定的速率流出。

1.1.3.举例

桶的容量为1W,有10W并发请求,最多只能将1W请求放入桶中,其余请求全部丢弃,以固定的速度处理请求

1.1.4.缺点

处理突发流量效率低(处理请求的速度不变,效率很低)

1.2.令牌桶算法(推荐)

1.2.1.原理

将请求放在一个缓冲队列中,拿到令牌后才能进行处理

1.2.2.实现

装令牌的桶大小固定,当令牌装满后,则不能将令牌放入其中;每次请求都会到桶中拿取一个令牌才能放行,没有令牌时即丢弃请求/继续放入缓存队列中等待

1.2.3.举例

桶的容量为10w个,生产1w个/s,有10W的并发请求,以每秒10W个/s速度处理,随着桶中的令牌很快用完,速度又慢慢降下来啦,而生产令牌的速度趋于一致1w个/s

1.2.4.缺点

处理突发流量提供了系统性能,但是对系统造成了一定的压力,桶的大小不合理,甚至会压垮系统(处理1亿的并发请求,将桶的大小设置为1,这个系统一下就凉凉啦)

2.网关限流(Spring Cloud Gateway + Redis实战)

2.1.pom.xml配置

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis-reactive</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-gateway</artifactId>
            <exclusions>
                <exclusion>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-web</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    <dependency>
        <groupId>org.apache.httpcomponents</groupId>
        <artifactId>httpclient</artifactId>
    </dependency>

2.2.yaml配置

spring:
  application:
    name: laokou-gateway
  cloud:
    gateway:
      routes:
        - id: LAOKOU-SSO-DEMO
          uri: lb://laokou-sso-demo
          predicates:
          - Path=/sso/**
          filters:
          - StripPrefix=1
          - name: RequestRateLimiter #请求数限流,名字不能乱打
            args:
              key-resolver: "#{@ipKeyResolver}"
              redis-rate-limiter.replenishRate: 1 #生成令牌速率-设为1方便测试
              redis-rate-limiter.burstCapacity: 1 #令牌桶容量-设置1方便测试
  redis:
    database: 0
    cluster:
      nodes: x.x.x.x:7003,x.x.x.x:7004,x.x.x.x:7005,x.x.x.x:7003,x.x.x.x:7004,x.x.x.x:7005
    password: laokou #密码
    timeout: 6000ms #连接超时时长(毫秒)
    jedis:
      pool:
        max-active: -1 #连接池最大连接数(使用负值表示无极限)
        max-wait: -1ms #连接池最大阻塞等待时间(使用负值表示没有限制)
        max-idle: 10 #连接池最大空闲连接
        min-idle: 5 #连接池最小空间连接

2.3.创建bean

@Configuration
public class RequestRateLimiterConfig {

    @Bean(value = "ipKeyResolver")
    public KeyResolver ipKeyResolver(RemoteAddressResolver remoteAddressResolver) {
    	return exchange -> Mono.just(remoteAddressResolver.resolve(exchange).getAddress().getHostAddress());
    }

    @Bean
    public RemoteAddressResolver remoteAddressResolver() {
    	// 远程地址解析器
    	return XForwardedRemoteAddressResolver.trustAll();
    }

}

3.测试限流(编写java并发测试)

@Slf4j
public class HttpUtil {
public static void apiConcurrent(String url,Map<String,String> params) {
        Integer count = 200;
        //创建线程池
        ThreadPoolExecutor pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.SECONDS, new SynchronousQueue<>());
        //同步工具
        CountDownLatch latch = new CountDownLatch(count);
        Map<String,String> dataMap = new HashMap<>(1);
        dataMap.put("authorize","XXXXXXX");
        for (int i = 0; i < count; i++) {
            pool.execute(() -> {
                try {
                    //访问网关的API接口
                    HttpUtil.doGet("http://localhost:1234/sso/laokou-demo/user",dataMap);
                } catch (IOException e) {
                    e.printStackTrace();
                }finally {
                    latch.countDown();
                }
            });
        }
        try {
            latch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
 
public static String doGet(String url, Map<String, String> params) throws IOException {
        //创建HttpClient对象
        CloseableHttpClient httpClient = HttpClients.createDefault();
        String resultString = "";
        CloseableHttpResponse response = null;
        try {
            //创建uri
            URIBuilder builder = new URIBuilder(url);
            if (!params.isEmpty()) {
                for (Map.Entry<String, String> entry : params.entrySet()) {
                    builder.addParameter(entry.getKey(), entry.getValue());
                }
            }
            URI uri = builder.build();
            //创建http GET请求
            HttpGet httpGet = new HttpGet(uri);
            List<NameValuePair> paramList = new ArrayList<>();
            RequestBuilder requestBuilder = RequestBuilder.get().setUri(new URI(url));
            requestBuilder.setEntity(new UrlEncodedFormEntity(paramList, Consts.UTF_8));
            httpGet.setHeader(new BasicHeader("Content-Type", "application/json;charset=UTF-8"));
            httpGet.setHeader(new BasicHeader("Accept", "*/*;charset=utf-8"));
            //执行请求
            response = httpClient.execute(httpGet);
            //判断返回状态是否是200
            if (response.getStatusLine().getStatusCode() == 200) {
                resultString = EntityUtils.toString(response.getEntity(), "UTF-8");
            }
        } catch (Exception e) {
            log.info("调用失败:{}",e);
        } finally {
            if (response != null) {
                response.close();
            }
            httpClient.close();
        }
        log.info("打印:{}",resultString);
        return resultString;
    }
}

image.png

说明这个网关限流配置是没有问题的

4.源码查看

Spring Cloud Gateway RequestRateLimiter GatewayFilter Factory文档地址

工厂 RequestRateLimiter GatewayFilter使用一个RateLimiter实现来判断当前请求是否被允许继续。如果不允许,HTTP 429 - Too Many Requests则返回默认状态。

4.1.查看 RequestRateLimiterGatewayFilterFactory

	@Override
	public GatewayFilter apply(Config config) {
		KeyResolver resolver = getOrDefault(config.keyResolver, defaultKeyResolver);
		RateLimiter<Object> limiter = getOrDefault(config.rateLimiter, defaultRateLimiter);
		boolean denyEmpty = getOrDefault(config.denyEmptyKey, this.denyEmptyKey);
		HttpStatusHolder emptyKeyStatus = HttpStatusHolder
				.parse(getOrDefault(config.emptyKeyStatus, this.emptyKeyStatusCode));
 
		return (exchange, chain) -> resolver.resolve(exchange).defaultIfEmpty(EMPTY_KEY).flatMap(key -> {
			if (EMPTY_KEY.equals(key)) {
				if (denyEmpty) {
					setResponseStatus(exchange, emptyKeyStatus);
					return exchange.getResponse().setComplete();
				}
				return chain.filter(exchange);
			}
			String routeId = config.getRouteId();
			if (routeId == null) {
				Route route = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);
				routeId = route.getId();
			}
                 // 执行限流
			return limiter.isAllowed(routeId, key).flatMap(response -> {
 
				for (Map.Entry<String, String> header : response.getHeaders().entrySet()) {
					exchange.getResponse().getHeaders().add(header.getKey(), header.getValue());
				}
 
				if (response.isAllowed()) {
					return chain.filter(exchange);
				}
 
				setResponseStatus(exchange, config.getStatusCode());
				return exchange.getResponse().setComplete();
			});
		});
	}

4.2.查看 RedisRateLimiter

	@Override
	@SuppressWarnings("unchecked")
	public Mono<Response> isAllowed(String routeId, String id) {
		if (!this.initialized.get()) {
			throw new IllegalStateException("RedisRateLimiter is not initialized");
		}
        // 这里如何加载配置?请思考
		Config routeConfig = loadConfiguration(routeId);
        // 令牌桶每秒产生令牌数量
		int replenishRate = routeConfig.getReplenishRate();
        // 令牌桶容量
		int burstCapacity = routeConfig.getBurstCapacity();
        // 请求消耗的令牌数
		int requestedTokens = routeConfig.getRequestedTokens();
		try {
                  // 键
			List<String> keys = getKeys(id);
                  // 参数
			List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "", "", requestedTokens + "");
			// 调用lua脚本
			Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
			return flux.onErrorResume(throwable -> {
				if (log.isDebugEnabled()) {
					log.debug("Error calling rate limiter lua", throwable);
				}
				return Flux.just(Arrays.asList(1L, -1L));
			}).reduce(new ArrayList<Long>(), (longs, l) -> {
				longs.addAll(l);
				return longs;
			}).map(results -> {
                          // 判断是否等于1,1表示允许通过,0表示不允许通过
				boolean allowed = results.get(0) == 1L;
				Long tokensLeft = results.get(1);
				Response response = new Response(allowed, getHeaders(routeConfig, tokensLeft));
				if (log.isDebugEnabled()) {
					log.debug("response: " + response);
				}
				return response;
			});
		}
		catch (Exception e) {
			log.error("Error determining if user allowed from redis", e);
		}
		return Mono.just(new Response(true, getHeaders(routeConfig, -1L)));
	}
 
	static List<String> getKeys(String id) {
		String prefix = "request_rate_limiter.{" + id;
		String tokenKey = prefix + "}.tokens";
		String timestampKey = prefix + "}.timestamp";
		return Arrays.asList(tokenKey, timestampKey);
	}

思考:redis限流配置是如何加载?

其实就是监听动态路由的事件并把配置存起来

image.png

4.3.重点来了,令牌桶 /META-INF/scripts/request_rate_limiter.lua 脚本剖析

-- User Request Rate Limiter filter
-- See https://stripe.com/blog/rate-limiters
-- See https://gist.github.com/ptarjan/e38f45f2dfe601419ca3af937fff574d#file-1-check_request_rate_limiter-rb-L11-L34
 
-- 令牌桶算法工作原理
-- 1.系统以恒定速率往桶里面放入令牌
-- 2.请求需要被处理,则需要从桶里面获取一个令牌
-- 3.如果桶里面没有令牌可获取,则可以选择等待或直接拒绝并返回
 
-- 令牌桶算法工作流程
-- 1.计算填满令牌桶所需要的时间(填充时间 = 桶容量 / 速率)
-- 2.设置存储数据的TTL(过期时间),为填充时间的两倍(存储时间 = 填充时间 * 2)
-- 3.从Redis获取当前令牌的剩余数量和上一次调用的时间戳
-- 4.计算距离上一次调用的时间间隔(时间间隔 = 当前时间 - 上一次调用时间)
-- 5.计算填充的令牌数量(填充令牌数量 = 时间间隔 * 速率)【前提:桶容量是固定的,不存在无限制的填充】
-- 6.判断是否有足够多的令牌满足请求【 (填充令牌数量 + 剩余令牌数量) >= 请求数量 && (填充令牌数量 + 剩余令牌数量) <= 桶容量 】
-- 7.如果请求被允许,则从桶里面取出相应数据的令牌
-- 8.如果TTL为正,则更新Redis键中的令牌和时间戳
-- 9.返回两个两个参数(allowed_num:请求被允许标志。1允许,0不允许)、(new_tokens:填充令牌后剩余的令牌数据)
 
-- 随机写入
redis.replicate_commands()
 
-- 令牌桶Key -> 存储当前可用令牌的数量(剩余令牌数量)
local tokens_key = KEYS[1]
 
-- 时间戳Key -> 存储上次令牌刷新的时间戳
local timestamp_key = KEYS[2]
 
-- 令牌填充速率
local rate = tonumber(ARGV[1])
 
-- 令牌桶容量
local capacity = tonumber(ARGV[2])
 
-- 当前时间
local now = tonumber(ARGV[3])
 
-- 请求数量
local requested = tonumber(ARGV[4])
 
-- 填满令牌桶所需要的时间
local fill_time = capacity / rate
 
-- 设置key的过期时间(填满令牌桶所需时间的2倍)
local ttl = math.floor(fill_time * 2)
 
-- 判断当前时间,为空则从redis获取
if now == nil then
    now = redis.call('TIME')[1]
end
 
-- 获取当前令牌的剩余数量
local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
    last_tokens = capacity
end
 
-- 获取上一次调用的时间戳
local last_refreshed = tonumber(redis.call('get', timestamp_key))
if last_refreshed == nil then
    last_refreshed = 0
end
 
-- 计算距离上一次调用的时间间隔
local delta = math.max(0, now - last_refreshed)
 
-- 当前的令牌数量(剩余 + 填充 <= 桶容量)
local now_tokens = math.min(capacity, last_refreshed + (rate * delta))
 
-- 判断是否有足够多的令牌满足请求
local allowed = now_tokens >= requested
 
-- 定义当前令牌的剩余数量
local new_tokens = now_tokens
 
-- 定义被允许标志
local allowed_num = 0
if allowed then
    new_tokens = now_tokens - requested
    -- 允许访问
    allowed_num = 1
end
 
-- ttl > 0,将当前令牌的剩余数量和当前时间戳存入redis
if ttl > 0 then
    redis.call('setex', tokens_key, ttl, new_tokens)
    redis.call('setex', timestamp_key, ttl, now)
end
 
-- 返回参数
return { allowed_num, new_tokens }

4.4.查看 GatewayRedisAutoConfiguration 脚本初始化

	@Bean
	@SuppressWarnings("unchecked")
	public RedisScript redisRequestRateLimiterScript() {
		DefaultRedisScript redisScript = new DefaultRedisScript<>();
		redisScript.setScriptSource(
                          // 根据指定路径获取lua脚本来初始化配置
				new ResourceScriptSource(new ClassPathResource("META-INF/scripts/request_rate_limiter.lua")));
		redisScript.setResultType(List.class);
		return redisScript;
	}
 
	@Bean
	@ConditionalOnMissingBean
	public RedisRateLimiter redisRateLimiter(ReactiveStringRedisTemplate redisTemplate,
			@Qualifier(RedisRateLimiter.REDIS_SCRIPT_NAME) RedisScript<List<Long>> redisScript,
			ConfigurationService configurationService) {
		return new RedisRateLimiter(redisTemplate, redisScript, configurationService);
	}

思考:请求限流过滤器是如何开启?

1.通过yaml配置开启

spring:
  cloud:
    gateway:
      server:
        webflux:
          filter:
            request-rate-limiter:
              enabled: true

2.GatewayAutoConfiguration自动注入bean

@Bean
@ConditionalOnBean({ RateLimiter.class, KeyResolver.class })
@ConditionalOnEnabledFilter
public RequestRateLimiterGatewayFilterFactory requestRateLimiterGatewayFilterFactory(RateLimiter rateLimiter,
       KeyResolver resolver) {
    return new RequestRateLimiterGatewayFilterFactory(rateLimiter, resolver);
}

重点来了,真正加载这个bean的是 @ConditionalOnEnabledFilter 注解进行判断

@Retention(RetentionPolicy.RUNTIME)
@Target({ ElementType.TYPE, ElementType.METHOD })
@Documented
@Conditional(OnEnabledFilter.class)
public @interface ConditionalOnEnabledFilter {

    // 这里value是用来指定满足条件的某些类,换一句话说,就是这些类都加载或注入到ioc容器,这个注解修饰的自动装配类才会生效
    Class<? extends GatewayFilterFactory<?>> value() default OnEnabledFilter.DefaultValue.class;

}

我们继续跟进代码,查看@Conditional(OnEnabledFilter.class)

众所周知,@Conditional可以用来加载满足条件的bean,所以,我们分析一下OnEnabledFilter

public class OnEnabledFilter extends OnEnabledComponent<GatewayFilterFactory<?>> {}

我分析它的父类,这里有你想要的答案!

public abstract class OnEnabledComponent<T> extends SpringBootCondition implements ConfigurationCondition {

    private static final String PREFIX = "spring.cloud.gateway.server.webflux.";

    private static final String SUFFIX = ".enabled";

    private ConditionOutcome determineOutcome(Class<? extends T> componentClass, PropertyResolver resolver) {
       // 拼接完整名称
       // 例如 => spring.cloud.gateway.server.webflux.request-rate-limiter.enabled
       String key = PREFIX + normalizeComponentName(componentClass) + SUFFIX;
       ConditionMessage.Builder messageBuilder = forCondition(annotationClass().getName(), componentClass.getName());
       if ("false".equalsIgnoreCase(resolver.getProperty(key))) {
          // 不满足条件不加载bean
          return ConditionOutcome.noMatch(messageBuilder.because("bean is not available"));
       }
       // 满足条件加载bean
       return ConditionOutcome.match();
    }
}

5.优化限流响应[使用全限定类名直接覆盖类]

小伙伴们,有没有发现,这个这个响应体封装的不太好,因此,我们来自定义吧,我们直接覆盖类,代码修改如下

@Getter
@ConfigurationProperties("spring.cloud.gateway.server.webflux.filter.request-rate-limiter")
public class RequestRateLimiterGatewayFilterFactory
       extends AbstractGatewayFilterFactory<RequestRateLimiterGatewayFilterFactory.Config> {

    private static final String EMPTY_KEY = "____EMPTY_KEY__";

    private final RateLimiter<?> defaultRateLimiter;

    private final KeyResolver defaultKeyResolver;

    /**
     * Switch to deny requests if the Key Resolver returns an empty key, defaults to true.
     */
    @Setter
    private boolean denyEmptyKey = true;

    /** HttpStatus to return when denyEmptyKey is true, defaults to FORBIDDEN. */
    @Setter
    private String emptyKeyStatusCode = HttpStatus.FORBIDDEN.name();

    public RequestRateLimiterGatewayFilterFactory(RateLimiter<?> defaultRateLimiter, KeyResolver defaultKeyResolver) {
       super(Config.class);
       this.defaultRateLimiter = defaultRateLimiter;
       this.defaultKeyResolver = defaultKeyResolver;
    }

    @Override
    public GatewayFilter apply(Config config) {
       KeyResolver resolver = getOrDefault(config.keyResolver, defaultKeyResolver);
       RateLimiter<?> limiter = getOrDefault(config.rateLimiter, defaultRateLimiter);
       boolean denyEmpty = getOrDefault(config.denyEmptyKey, this.denyEmptyKey);
       HttpStatusHolder emptyKeyStatus = HttpStatusHolder
          .parse(getOrDefault(config.emptyKeyStatus, this.emptyKeyStatusCode));
       return (exchange, chain) -> resolver.resolve(exchange).defaultIfEmpty(EMPTY_KEY).flatMap(key -> {
          if (EMPTY_KEY.equals(key)) {
             if (denyEmpty) {
                setResponseStatus(exchange, emptyKeyStatus);
                return exchange.getResponse().setComplete();
             }
             return chain.filter(exchange);
          }
          String routeId = config.getRouteId();
          if (routeId == null) {
             Route route = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);
             Assert.notNull(route, "Route is null");
             routeId = route.getId();
          }
          return limiter.isAllowed(routeId, key).flatMap(response -> {
             for (Map.Entry<String, String> header : response.getHeaders().entrySet()) {
                exchange.getResponse().getHeaders().add(header.getKey(), header.getValue());
             }
             if (response.isAllowed()) {
                return chain.filter(exchange);
             }
             // 主要修改这行
             return responseOk(exchange, Result.fail("Too_Many_Requests", "请求太频繁"));
          });
       });
    }
    
    private Mono<Void> responseOk(ServerWebExchange exchange, Object data) {
        return responseOk(exchange, JacksonUtils.toJsonStr(data), MediaType.APPLICATION_JSON);
    }

    private Mono<Void> responseOk(ServerWebExchange exchange, String str, MediaType contentType) {
        DataBuffer buffer = exchange.getResponse().bufferFactory().wrap(str.getBytes(StandardCharsets.UTF_8));
        ServerHttpResponse response = exchange.getResponse();
        response.setStatusCode(HttpStatus.OK);
        response.getHeaders().setContentType(contentType);
        response.getHeaders().setContentLength(str.getBytes(StandardCharsets.UTF_8).length);
        return response.writeWith(Flux.just(buffer));
    }

    private <T> T getOrDefault(T configValue, T defaultValue) {
       return (configValue != null) ? configValue : defaultValue;
    }

    public static class Config implements HasRouteId {

       @Getter
       private KeyResolver keyResolver;

       @Getter
       private RateLimiter<?> rateLimiter;

       @Getter
       private HttpStatus statusCode = HttpStatus.TOO_MANY_REQUESTS;

       @Getter
       private Boolean denyEmptyKey;

       @Getter
       private String emptyKeyStatus;

       private String routeId;

       public Config setKeyResolver(KeyResolver keyResolver) {
          this.keyResolver = keyResolver;
          return this;
       }

       public Config setRateLimiter(RateLimiter<?> rateLimiter) {
          this.rateLimiter = rateLimiter;
          return this;
       }

       public Config setStatusCode(HttpStatus statusCode) {
          this.statusCode = statusCode;
          return this;
       }

       public Config setDenyEmptyKey(Boolean denyEmptyKey) {
          this.denyEmptyKey = denyEmptyKey;
          return this;
       }

       public Config setEmptyKeyStatus(String emptyKeyStatus) {
          this.emptyKeyStatus = emptyKeyStatus;
          return this;
       }

       @Override
       public void setRouteId(String routeId) {
          this.routeId = routeId;
       }

       @Override
       public String getRouteId() {
          return this.routeId;
       }

    }

}

二、熔断降级

思考:为什么需要熔断降级?

当某个服务发生故障时(超时,响应慢,宕机),上游服务无法及时获取响应,进而也导致故障,出现服务雪崩【服务雪崩是指故障像滚雪球一样沿着调用链向上游扩展,进而导致整个系统瘫痪】

熔断降级的目标就是在故障发生时,快速隔离问题服务【快速失败,防止资源耗尽】,保护系统资源不被耗尽,防止故障扩散,保护核心业务可用性。

1.技术选型

1.1.熔断降级框架选型对比表

对比维度 Hystrix (Netflix) Sentinel (Alibaba) Resilience4j
当前状态 ❌ 停止更新 (维护模式) ✅ 持续更新 ✅ 持续更新
熔断机制 滑动窗口计数 响应时间/异常比例/QPS 错误率/响应时间阈值
流量控制 ❌ 仅基础隔离 ✅ QPS/并发数/热点参数/集群流控 ✅ RateLimiter
隔离策略 线程池(开销大)/信号量 并发线程数(无线程池开销) 信号量/Bulkhead
降级能力 Fallback 方法 Fallback + 系统规则自适应 Fallback + 自定义组合策略
实时监控 ✅ Hystrix Dashboard ✅ 原生控制台(可视化动态规则) ❌ 需整合 Prometheus/Grafana
动态配置 ❌ 依赖 Archaius ✅ 控制台实时推送 ✅ 需编码实现(如Spring Cloud Config)
生态集成 ✅ Spring Cloud Netflix ✅ Spring Cloud Alibaba/多语言网关 ✅ Spring Boot/响应式编程
性能开销 高(线程池隔离) 低(无额外线程) 极低(纯函数式)
适用场景 遗留系统维护 高并发控制/秒杀/热点防护 云原生/轻量级微服务
推荐指数 ⭐⭐ (不推荐新项目) ⭐⭐⭐⭐⭐ (Java高并发首选) ⭐⭐⭐⭐⭐ (云原生/响应式首选)

1.2选型决策指南

需求场景 推荐方案 原因
电商秒杀/API高频调用管控 ✅ Sentinel 精细流量控制+热点防护+实时看板
Kubernetes云原生微服务 ✅ Resilience4j 轻量化+无缝集成Prometheus+响应式支持
Spring Cloud Netflix旧系统 ⚠️ Hystrix 兼容现存代码(短期过渡)
多语言混合架构(如Go+Java) ✅ Sentinel 通过Sidecar代理支持非Java服务
响应式编程(WebFlux) ✅ Resilience4j 原生Reactive API支持

2.Resilience4j使用

Resilience4j官方文档

Resilience4j 可以看作是 Hystrix 的替代品,Resilience4j支持 熔断器单机限流

Resilience4j 是一个专为函数式编程设计的轻量级容错库。Resilience4j 提供高阶函数(装饰器),可通过断路器、速率限制器、重试或隔离功能增强任何函数式接口、lambda 表达式或方法引用。您可以在任何函数式接口、lambda 表达式或方法引用上堆叠多个装饰器。这样做的好处是,您可以只选择所需的装饰器,而无需考虑其他因素。

2.1.网关熔断降级(Spring Cloud Gateway + Resilience4j实战)

2.1.1.pom依赖
<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-circuitbreaker-reactor-resilience4j</artifactId>
</dependency>

2.1.2.yaml配置

spring:
  application:
    name: laokou-gateway
  cloud:
    gateway:
       server:
        webflux:
          routes:
            - id: LAOKOU-SSO-DEMO
              uri: lb://laokou-sso-demo
              predicates:
              - Path=/sso/**
              filters:
              - name: CircuitBreaker
                args:
                  name: default
                  fallbackUri: "forward:/fallback"
          filter:
            circuit-breaker:
              enabled: true

2.1.3.CircuitBreakerConfig配置

/**
 * @author laokou
 */
@Configuration
public class CircuitBreakerConfig {

    @Bean
    public RouterFunction<ServerResponse> routerFunction() {
       return RouterFunctions.route(
             RequestPredicates.path("/fallback").and(RequestPredicates.accept(MediaType.TEXT_PLAIN)),
             (request) -> ServerResponse.status(HttpStatus.SC_OK)
                .contentType(MediaType.APPLICATION_JSON)
                .body(BodyInserters.fromValue(Result.fail("Service_Unavailable", "服务正在维护"))));
    }

    @Bean
    public Customizer<ReactiveResilience4JCircuitBreakerFactory> reactiveResilience4JCircuitBreakerFactoryCustomizer() {
       return factory -> factory.configureDefault(id -> new Resilience4JConfigBuilder(id)
          // 3秒后超时时间
          .timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(3)).build())
          .circuitBreakerConfig(io.github.resilience4j.circuitbreaker.CircuitBreakerConfig.ofDefaults())
          .build());
    }

}

我是老寇,我们下次再见啦!


文章来源:https://www.cnblogs.com/koushenhai/p/18929660
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

上一篇:hot100之图论
下一篇:没有了

相关文章

本站推荐

标签云