首页 > 基础资料 博客日记

为什么不建议通过Executors构建线程池

2024-12-29 23:19:04基础资料围观57

Java资料网推荐为什么不建议通过Executors构建线程池这篇文章给大家,欢迎收藏Java资料网享受知识的乐趣

Executors类看起来功能还是比较强大的,又用到了工厂模式、又有比较强的扩展性,重要的是用起来还比较方便,如:

ExecutorService executor = Executors.newFixedThreadPool(nThreads) ;

即可创建一个固定大小的线程池。

但是为什么在阿里巴巴Java开发手册中也明确指出,不允许使用Executors创建线程池呢

Executors存在什么问题

在阿里巴巴Java开发手册中提到,使用Executors创建线程池可能会导致OOM(OutOfMemory ,内存溢出),但是并没有说明为什么,那么接下来我们就来看一下到底为什么不允许使用Executors?

我们先来一个简单的例子,模拟一下使用Executors导致OOM的情况。

/**
 * @author Hollis
 */
public class ExecutorsDemo {
    private static ExecutorService executor = Executors.newFixedThreadPool(15);
    public static void main(String[] args) {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            executor.execute(new SubThread());
        }
    }
}

class SubThread implements Runnable {
    @Override
    public void run() {
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            //do nothing
        }
    }
}

通过指定JVM参数:-Xmx8m -Xms8m 运行以上代码,会抛出OOM:

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
    at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)

以上代码指出,ExecutorsDemo.java的第16行,就是代码中的executor.execute(new SubThread());

Executors为什么存在缺陷

通过上面的例子,我们知道了Executors创建的线程池存在OOM的风险,那么到底是什么原因导致的呢?我们需要深入Executors的源码来分析一下。

其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致OOM的其实是LinkedBlockingQueue.offer方法。

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
    at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)

如果读者翻看代码的话,也可以发现,其实底层确实是通过LinkedBlockingQueue实现的:

public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());

如果读者对Java中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。

Java中的BlockingQueue主要有两种实现,分别是ArrayBlockingQueueLinkedBlockingQueue

ArrayBlockingQueue是一个用数组实现的有界阻塞队列,必须设置容量。

LinkedBlockingQueue是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE

这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置LinkedBlockingQueue的容量的话,其默认容量将会是Integer.MAX_VALUE

newFixedThreadPool中创建LinkedBlockingQueue时,并未指定容量。此时,LinkedBlockingQueue就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。

上面提到的问题主要体现在newFixedThreadPoolnewSingleThreadExecutor两个工厂方法上,并不是说newCachedThreadPoolnewScheduledThreadPool这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致OOM。

扩展知识

如何正确创建线程池

避免使用Executors创建线程池,主要是避免使用其中的默认实现,那么我们可以自己直接调用ThreadPoolExecutor的构造函数来自己创建线程池。在创建的同时,给BlockQueue指定容量就可以了。

private static ExecutorService executor = new ThreadPoolExecutor(10, 10,
        60L, TimeUnit.SECONDS,
        new ArrayBlockingQueue(10));

这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛`java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。

除了自己定义ThreadPoolExecutor外。还有其他方法。这个时候第一时间就应该想到开源类库,如apache和guava等。

作者推荐使用guava提供的ThreadFactoryBuilder来创建线程池。

public class ExecutorsDemo {

    private static ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
        .setNameFormat("demo-pool-%d").build();

    private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
        0L, TimeUnit.MILLISECONDS,
        new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) {

        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            pool.execute(new SubThread());
        }
    }
}

通过上述方式创建线程时,不仅可以避免OOM的问题,还可以自定义线程名称,更加方便的出错的时候溯源


文章来源:https://www.cnblogs.com/tzzp/p/18633640
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云