首页 > 基础资料 博客日记

SQL进阶技巧:如何处理Hive中的数据倾斜?

2024-11-01 21:00:08基础资料围观61

文章SQL进阶技巧:如何处理Hive中的数据倾斜?分享给大家,欢迎收藏Java资料网,专注分享技术知识

目录

1 groupby(大表分组-局部聚合+全局聚合)

2 join(大中表Join - 加salt + 小表膨胀)

3 双大表Join - 抽样取倾斜key+BroadJoin

 4 小结


1 groupby(大表分组-局部聚合+全局聚合)

示例1:

select label,sum(cnt) as all from 
(
    select rd,label,sum(1) as cnt from 
    (
        select id,label,round(rand(),2) as rd,value from tmp1
    ) as tmp
    group by rd,label
) as tmp
group by label;

示例2:

select 
	split(new_source,'\\_')[0] as source 
	,sum(cnt) as cnt 
from  
(select  
	concat(source,'_', rand()*100) as  new_source
	,count(1) as cnt 
from  test_table 
where day ='2022-01-01'
group by 
	concat(source,'_', rand()*100)
)tt 
group by 
	split(new_source,'\\_')[0]

2 join(大中表Join - 加salt + 小表膨胀)

示例1:

select label,sum(value) as all from 
(
    select rd,label,sum(value) as cnt from
    (
        select tmp1.rd as rd,tmp1.label as label,tmp1.value*tmp2.value as value 
        from 
        (
            select id,round(rand(),1) as rd,label,value from tmp1
        ) as tmp1
        join
        (
            select id,rd,label,value from tmp2
            lateral view explode(split('0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9',',')) mytable as rd
        ) as tmp2
        on tmp1.rd = tmp2.rd and tmp1.label = tmp2.label
    ) as tmp1
    group by rd,label
) as tmp1
group by label;

 示例2:

select 
	source
	,source_name
	,sum(cnt) as cnt 
from  
(select 
	t1.source 
	,new_source
	,nvl(source_name,'未知') as source_name 
	,count(imei) as cnt 
from  
(select  
	imei
	,source 
	,concat(cast(rand()*10 as int ),'_',source ) as new_source
from  test_table_1
where day ='2022-01-01'
) t1 
inner join 
(
select 
	source_name 
	,concat(preflix,'_',source) as new_source
from  test_table_1
where day ='2022-01-01'
lateral view explode(split('0,1,2,3,4,5,6,7,8,9,10',','))b as preflix 
) t2 
on t1.new_source =t2.new_source
group by 
t1.source 
,new_source
,nvl(source_name,'未知')
) tta  
group by 
	source
	,source_name

3 双大表Join - 抽样取倾斜key+BroadJoin

##优化前:
create table test.tmp_table_test_all as 
select  
imei 
,lable_id 
,nvl(label_name,'未知')
from tmp_table_1  t1  
left join 
(select  
lable_id
,label_name
from  tmp_table_2 
where day ='2024-01-01') t2 
on t1.lable_id =t2.lable_id
where t1.day ='2024-01-01'
;

## 优化后 :
create table test.tmp_table_test_all_new  as 


with tmp_table_test_1 as 
(select  
lable_id 
,count(1) as cnt 
from tmp_table_1  t1 
tablesample(5 percent) --抽样取5%的数据,减少table scan的量
group by lable_id
order by cnt desc 
limit 100
) 


select  
	imei 
	,lable_id 
	,nvl(label_name,'未知') as  label_name
from tmp_table_1  t1 
left join  tmp_table_test_1  t2
on t1.lable_id =t2.lable_id
left join 
(select  
	lable_id
	,label_name
from  tmp_table_2 
where day ='2024-01-01') t3
on t1.lable_id =t3.lable_id
where t1.day ='2024-01-01' and  t2.lable_id is null 

union all  

select  
	imei 
	,lable_id 
	,nvl(label_name,'未知') as  label_name 
from tmp_table_1  t1 
inner  join 
(select  
	lable_id
from  tmp_table_test_1  t1 
left   join   tmp_table_2  t2 
on t1.lable_id =t2.lable_id
where t2.day ='2024-01-01') t3
on t1.lable_id =t3.lable_id
where t1.day ='2024-01-01' 
;

 4 小结

本文总结了Hive中数据倾斜的常见处理方法。主要包含:

 

如果您觉得本文还不错,对你有帮助,那么不妨可以关注一下我的数字化建设实践之路专栏,这里的内容会更精彩。

专栏 原价99,现在活动价59.9,按照阶梯式增长,还差5个人上升到69.9,最终恢复到原价

专栏优势:
(1)一次收费持续更新。

(2)实战中总结的SQL技巧,帮助SQLBOY 在SQL语言上有质的飞越,无论你应对业务难题及面试都会游刃有余【全网唯一讲SQL实战技巧,方法独特

(3)实战中数仓建模技巧总结,让你认识不一样的数仓。【数据建模+业务建模,不一样的认知体系】(如果只懂数据建模而不懂业务建模,数仓体系认知是不全面的

(4)数字化建设当中遇到难题解决思路及问题思考。

我的 专栏具体链接如下:

数字化建设通关指南_莫叫石榴姐的博客-CSDN博客

https://blog.csdn.net/godlovedaniel/category_12706766.html


文章来源:https://blog.csdn.net/godlovedaniel/article/details/143314674
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云