首页 > 基础资料 博客日记

大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方

2024-08-23 02:00:12基础资料围观139

本篇文章分享大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方,对你有帮助的话记得收藏一下,看Java资料网收获更多编程知识

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
    HDFS(已更完)
    MapReduce(已更完)
    Hive(已更完)
    Flume(已更完)
    Sqoop(已更完)
    Zookeeper(已更完)
    HBase(已更完)
    Redis (已更完)
    Kafka(已更完)
    Spark(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Spark RDD 操作方式Action
  • Spark RDD的 Key-Value RDD
  • 详细解释与测试案例

梦的开始

写一个WordCount程序虽然看似简单,但它在大数据学习中有着深远的意义。就像编程世界中的“Hello World”,WordCount是我们迈入分布式计算世界的第一步。在这个过程中,我不仅加深了对Spark生态系统的理解,还亲身体验了大数据处理的核心思想:分而治之。

通过编写和运行这个程序,我意识到,尽管代码本身很简单,但其背后的概念却揭示了大数据处理的复杂性与挑战性。每个词频的统计背后,都代表着分布式系统中对数据的高效切分、分发和聚合。这使我更加意识到,在大数据的世界里,性能优化和资源管理是永恒的主题。

更重要的是,WordCount让我感受到Scala语言在处理并行计算时的优势。通过在实际环境中部署和运行这个程序,我也看到了自己从理论学习向实践应用迈出的重要一步。这不仅是一段代码的完成,更是我在大数据领域探索旅程的一个重要里程碑。

总的来说,这段经历让我更加坚定了继续深入学习和应用大数据技术的决心。WordCount不仅是学习的起点,更是打开大数据世界大门的一把钥匙。

环境依赖

首先要确保你之前的环境都搭建完毕了,最起码的要有单机的Spark,最好是有Spark集群,可以更好的进行学习和测试。

导入依赖

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>icu.wzk</groupId>
    <artifactId>spark-wordcount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <scala.version>2.12.10</scala.version>
        <spark.version>2.4.5</spark.version>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>com.typesafe</groupId>
            <artifactId>config</artifactId>
            <version>1.3.4</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>4.4.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>cn.lagou.sparkcore.WordCount</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

编写Scala

使用Scala完成我们的Word Count程序:

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    var conf = new SparkConf().setAppName("ScalaHelloWorldCount")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val lines: RDD[String] = sc.textFile(args(0))

    val words: RDD[String] = lines.flatMap(line => line.split("\\s+"))
    val wordMap: RDD[(String, Int)] = words.map(x => (x, 1))
    val result: RDD[(String, Int)] = wordMap.reduceByKey(_ + _)

    result.foreach(println)
    sc.stop()
  }
}

大致的项目结构和内容,如下图所示:

编译项目

运行Maven的Package,等待执行完毕后,会在 target 下打包出一个 Jar 包。
如果是第一次打包,需要下载包,时间会比较久。

# 你也可以用Shell的方式
mvn clean package

运行的过程如下图所示:

打包完的结果大致如下:

上传项目

将项目上传到Spark的集群中:

cd /opt/wzk

我上传到该目录,该目录的情况大致如下:

运行项目

编写如下的指令,将任务提交到Spark集群中进行运行。
我这里随便找了个文件,你也可以找个文件进行运行。

spark-submit --master local[*] --class icu.wzk.WordCount spark-wordcount-1.0-SNAPSHOT.jar /opt/wzk/goodtbl.java

运行结果如下图:

经过一段时间的计算之后,可以看到最终的结果如下图所示:

编写Java

package icu.wzk;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;

public class JavaWordCount {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("JavaWordCount")
                .setMaster("local[*]");
        JavaSparkContext sc = new JavaSparkContext(conf);
        sc.setLogLevel("WARN");
        JavaRDD<String> lines = sc.textFile(args[0]);
        JavaRDD<String> words = lines
                .flatMap(line -> Arrays.stream(line.split("\\s+")).iterator());
        JavaPairRDD<String, Integer> wordsMap = words
                .mapToPair(word -> new Tuple2<>(word, 1));
        JavaPairRDD<String, Integer> results = wordsMap.reduceByKey((x, y) -> x + y);
        results.foreach(elem -> System.out.println(elem));
        sc.stop();
    }
}

编译项目

和上面一样,Scala的方式一样:

上传项目

同样的,和上述的Scala的过程一样,将项目上传:

/opt/wzk/spark-wordcount-1.0-SNAPSHOT.jar

运行项目

这里注意,写的是Java的类,而不是Scala的启动:

spark-submit --master local[*] --class icu.wzk.JavaWordCount spark-wordcount-1.0-SNAPSHOT.jar /opt/wzk/goodtbl.java

运行的过程截图如下图所示:

等待执行完毕,最终的结果如下图所示:


文章来源:https://blog.csdn.net/w776341482/article/details/141251254
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云