首页 > 基础资料 博客日记
你还在“垃圾”调优?快来看看JDK17的ZGC如何解放双手 | 京东云技术团队
2024-01-10 12:29:11基础资料围观255次
1、前言
不要犹豫了,GC最大停顿时间小于1ms,支持16TB内存,这么高的性能提升,也不需要复杂的调优,节省了这个时间,你去陪对象不香嘛。
上篇文章给大家带来了JDK11升级JDK17的最全实践,相信大家阅读后对于升级JDK17有了基本的了解。同时我们也会比较好奇,ZGC的原理是啥样的,怎么做到停顿时间那么短? 本文将通过对比ZGC与传统垃圾回收器的改动点,从多个维度综合分析为什么ZGC的停顿时间那么短。同时由于ZGC的深层次原理可能较为晦涩难懂,本文将尽可能采用图文并茂的方式,以使大家更容易理解ZGC的核心原理。
2、ZGC是什么
ZGC垃圾收集器( Z Garbage Collector )是一种可伸缩的低延迟垃圾收集器,ZGC 可以很好地处理从几百兆字节到16TB堆大小空间的垃圾回收,而中断应用程序线程的时间不超过1ms。特别适合需要低延迟的应用,同时暂停时间与正在使用的堆大小无关。。
ZGC 最初作为 JDK 11 中的实验性功能引入,并在 JDK 15 中宣布生产就绪。
ZGC的技术特点:
ZGC的目标:
3、有了G1,为什么还要引入ZGC
G1垃圾收集器采用了部分区域回收的处理方式,有效解决了传统垃圾收集器中全堆扫描所带来的性能问题,极大地改善了在堆内存较大情况下的停顿时间。然而,随着硬件性能的不断提升,G1回收器也面临着极大的性能限制。尽管G1经过多个版本的优化和调优,已经接近极限,但仍然无法满足日益增长的机器内存需求。
说到底,G1的性能还是不能满足现阶段的硬件配置,G1的GC停顿时间相对较长,比如我上篇文章中的压测报告中,G1的最大停顿时间达到了610ms。
4、ZGC为什么那么快?
4.1、分代模型和分区模型
传统的垃圾回收器都采用分代的垃圾回收模型。新一代ZGC采用分区模型(类似于G1),分为三种类型的分区(2MB、32MB、N*2MB),从JDK21开始支持分代模型
ZGC的分页模型允许并发地处理内存分配和回收操作,从而减少了垃圾收集的停顿时间。相比之下,分代模型需要在不同代之间进行对象的复制或移动,可能会导致更长的停顿时间。
ZGC的分页模型可以动态地调整页的大小,以适应不同大小的对象。这样可以提高内存的利用率,减少内存碎片的产生。而分代模型中,不同代的内存空间是固定的,可能会导致内存碎片的问题。
ZGC的分页模型允许将堆内存划分为多个页区,并且每个页区都有独立的垃圾收集线程。这样可以实现垃圾收集的并行性,提高系统的可伸缩性和吞吐量。而分代模型中,不同代的垃圾收集是串行或并发-串行的,可能无法充分利用多核处理器的性能。
ZGC的分页模型可以有效地管理大内存堆。它可以根据需要动态地增加或减少页的数量,以适应大内存堆的需求。而分代模型中,不同代的内存空间是固定的,无法有效地管理大内存堆。
4.2、GC标记信息位置的变化
传统垃圾回收器通过扫描堆中的对象(扫描堆空间是很慢的),根据对象头中的可达性标记信息,来确定对象是否应该被回收。
ZGC不直接依赖于对象头中的信息来进行垃圾回收决策,而是把GC信息存在内存引用地址上。GC时通过扫描栈上的内存引用指针来确定对象的引用关系和可达性,从而来判断对象是否应该被回收。
4.3、引用指针的变化-指针着色
ZGC通过64位指针(64位操作系统才支持)的高位来标识对象的可达性,其中第44位到47位标识GC信息。
源码查看:
4.4、GC标记过程
1、初始标记
扫描所有线程栈的根节点,然后再扫描根节点直接引用的对象并进行标记。这个阶段需要停顿所有的应用线程(STW),但由于只扫描根对象直接引用的对象,所以停顿时间很短。停顿时间高度依赖根节点的数量,从JDK16开始,已经解决了此问题:https://malloc.se/blog/zgc-jdk16
2、并发标记/并发对象重定位
第1个GC周期:并发遍历上一次标记下引用的对象并标记。
第2个GC周期:并发遍历的过程中,顺便把上周期"并发迁移"阶段迁移的对象指针修正指向到新分区。
3、标记结束/再标记
标记上一次标记过程新产生的对象。并发标记过程中,应用线程可能会产生一些新对象,所以需要再标记出来。这个阶段需要停顿所有的应用线程。(STW),但由于只标记新增的对象,数量很少,所以停顿时间很短。
4、并发转移准备
为对象转移做一些前置准备,比如引用处理、弱引用清理和重定位集选择等。
5、转移开始/初始转移
迁移根节点直接引用的对象到新分区,这个阶段需要停顿所有的应用线程(STW),但由于只迁移根节点直接引用的对象,所以停顿时间很短。
6、并发迁移
并发迁移“并发标记”阶段标记的对象到新分区(对象引用指针未修改,仍指向旧分区)。
4.5、几个问题说明
1、为何并发转移阶段,对象已转移至新分区后,却没有修改线程栈上实际的引用,依然指向旧分区?
因为如果此时再扫描线程栈,修改引用地址,要扫描的量太大,效率太低。
刚好下一个GC周期也要进行扫描标记,可以利用扫描标记的时间,同时把对象引用修正指向到新分区,以此提升效率,减少停顿时间
2、并发转移阶段对象已迁移,但引用指针仍指向旧分区,如何保证旧分区被清理后对象仍然可以访问?
5、GC全流程示意图
此示意图依据JDK11的ZGC理念绘制,尽管在JDK11至JDK17的多个版本迭代过程中,部分技术实现或许发生了变动,然而核心原理依旧保持不变。
6、GC日志分析
下面是我压测过程的GC日志,【STW】表示暂停业务线程执行GC,【并发】表示不暂停业务线程并发执行GC,可以看到STW停顿时间很短
我们再把上面的关键日志贴到到GC示意图中来分析实际的GC过程,可以发现总停顿时间只有0.07ms,符合官方说的小于1ms
7、ZGC如何调优
结论:1、ZGC 被设计为自适应且需要最少的手动配置。在 Java 程序执行期间,ZGC 通过调整代大小、扩展 GC 线程数量以及调整保有阈值来动态适应工作负载。主要的调整旋钮是增加最大堆大小。 2、不再需要调整–Xmn、–XX:TenuringThreshold 和–XX:ConcGCThreads(动态调整,JDK17开始)等 3、只需要设置:–Xmx -XX:+UseZGC
7.1、设置堆大小
ZGC 最重要的调整选项是设置最大堆大小,您可以使用-Xmx命令行选项进行设置。由于 ZGC 是并发收集器,因此您必须选择最大堆大小,以便堆可以容纳应用程序的实时集,并且堆中有足够的空间以允许在 GC 运行时处理分配。需要多少空间很大程度上取决于分配率和应用程序的实时设置大小。一般来说,给 ZGC 的内存越多越好。但同时,浪费内存也是不可取的,因此关键在于在内存使用量和 GC 需要运行的频率之间找到平衡。
7.2、设置并发GC线程
不需要特意设置GC线程数,程序会自动调整。
我们可能想要考虑的第二个调整选项是设置并发 GC 线程的数量 ( -XX:ConcGCThreads=<number>)。ZGC 具有启发式方法来自动选择此数字。这种启发式方法通常效果很好,但根据应用程序的特性,可能需要进行调整。该选项本质上决定了应该为 GC 提供多少 CPU 时间。给予太多,GC 将从应用程序中窃取过多的 CPU 时间。如果设置太少,应用程序分配垃圾的速度可能会快于 GC 收集垃圾的速度。
从 JDK 17 开始,ZGC 动态扩展和缩减并发 GC 线程数。这使得您更不需要调整 GC 线程的并发数量。
一般来说,如果低延迟(即低应用程序响应时间)对您的应用程序很重要,那么永远不要过度配置您的系统。理想情况下,您的系统的 CPU 利用率不应超过 70%。
7.3、ZGC特有参数配置
正如我上面说的,大部分情况的都不需要进行调优,特殊情况设置最好结合压测情况。
表示ZGC 垃圾回收器在检测到内存分配波动时的容忍度,默认50,越小越敏感,会更快地对内存分配波动做出反应,可能会导致更频繁的垃圾回收。一般不需要手动设置,应对突发流量时,可以考虑设置。
该参数用于设置 ZGC 的垃圾回收间隔时间。默认值为 4s,表示 ZGC 每 4 秒进行一次垃圾回收。您可以根据应用程序的性能需求和停顿时间目标进行调整。
该参数用于启用或禁用 ZGC 的主动模式。默认情况下,ZGC 处于主动模式,以最大程度地减少停顿时间。如果将该参数设置为 false,则 ZGC 将进入被动模式,可能会导致更长的停顿时间,但可以提高吞吐量。
开启大页面,此选项依赖Linux的内核,且需要用root去开启。理论上堆内存越大,回收效率越好。
7.4、开启 GC 日志
要启用基本日志记录(每个 GC 输出一行):-Xlog:gc:gc.log
要启用对调优/性能分析有用的 GC 日志记录:-Xlog:gc*:gc.log,其中 gc* 表示记录包含该gc标签的所有标签组合, :gc.log 表示将日志写入名为 gc.log
8、总结
通过本文的介绍,我们大致了解了ZGC的核心原理、日志分析方法以及调优技巧。总的来说,ZGC作为一种现代化的垃圾回收器,它为大规模应用程序的性能和可用性带来了显著的提升,希望本文能帮助大家更好的理解和应用ZGC。
作者:京东科技 曲振富
来源:京东云开发者社区 转载请注明来源
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签: